[口头报告]Electron Driven Liquid-Liquid Phase Transition in High-Pressure Lithium

Electron Driven Liquid-Liquid Phase Transition in High-Pressure Lithium
编号:122 稿件编号:139 访问权限:仅限参会人 更新:2025-04-03 14:45:02 浏览:108次 口头报告

报告开始:暂无开始时间 (Asia/Shanghai)

报告时间:暂无持续时间

所在会议:[暂无会议] » [暂无会议段]

暂无文件

摘要
This study presents a comprehensive investigation of the liquid-liquid phase transition in lithium under extreme pressures (0-80 GPa) at constant temperature 600 K. By integrating machine learning potentials (MLP) with first-principles calculations, we reveal a pressure-induced electronic transition in liquid lithium that mirrors the transfer of electrons from s orbitals to p orbitals and the localization of valence electrons in solid lithium. At around 30 GPa, liquid lithium transitions from an isotropic liquid dominated by s-electrons to a covalent liquid dominated by p-electrons, accompanied by the extremum of the valence band width and the singularity of thermodynamic properties. In addition, the degree of electron localization increases with pressure and gradually tends to saturate, which leads to the anomalous melting line and diffusion behavior of liquid lithium. These findings not only elucidate the complex electronic behavior of liquid alkali metals under extreme compression, but also provide crucial insights into the universal behavior of alkali metals under high-pressure environments.

 
关键字
liquid liquid phase transition,lithium,machine learning potential,high temperature and high pressure,Electronic structure
报告人
ToneQunchao
讲师 国防科技大学

稿件作者
ToneQunchao 国防科技大学
DaiJiayu National University of Defense Technology
发表评论
验证码 看不清楚,更换一张
全部评论
注册参会 提交稿件 酒店预订